Smad3-mSin3A-HDAC1 Complex is Required for TGF-β1-Induced Transcriptional Inhibition of PPARγ in Mouse Cardiac Fibroblasts.

نویسندگان

  • Kaizheng Gong
  • Mingxing Chen
  • Rujun Li
  • Yanghong He
  • Huajiang Zhu
  • Dan Yao
  • Suzanne Oparil
  • Zhengang Zhang
چکیده

BACKGROUND We have recently demonstrated that activated transforming growth factor-β (TGF-β) signaling suppresses myocardial peroxisome proliferator-activated receptor γ (PPARγ) expression in the pressure overloaded heart. In this study, we aim to further define the molecular mechanisms that underlie TGF-β-induced PPARγ transcriptional inhibition. METHODS Adult mouse cardiac fibroblasts were isolated and cultured. PPARγ promoter activity was measured by the dual-Luciferase reporter assay. Interactions between transcription factors and the target gene were identified. RESULTS In cultured cardiac fibroblasts transfected with a plasmid containing a human PPARγ promoter, co-transfection of Smad3 and Smad4, but not Smad2, plasmids significantly enhanced TGF-β1-induced inhibition of PPARγ promoter activity. Promoter deletion analysis and site-directed mutagenesis assays defined two Smad binding elements on the promoter of the PPARγ gene. Utilizing chromatin immunoprecipitation analysis and DNA-affinity precipitation methods, we demonstrated that the transcriptional regulatory complex consisting of Smad3, mSin3A and HDAC1 bound to the promoter of the PPARγ gene in cardiac fibroblasts in response to TGF-β1 stimulation. Either silencing endogenous mSin3A expression by Lentivirus-mediated transduction of mSin3A shRNA or pretreatment with the specific HDAC1 inhibitor MS-275 effectively attenuated TGF-β-induced transcriptional suppression of PPARγ. CONCLUSION These results suggest that TGF-β1-induced inhibition of PPARγ transcription depends on formation of a functional transcriptional regulatory complex that includes Smad3, mSin3A and HDAC1 at the PPARγ promoter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macrophage-Stimulated Cardiac Fibroblast Production of IL-6 Is Essential for TGF β/Smad Activation and Cardiac Fibrosis Induced by Angiotensin II

Interleukin-6 (IL-6) is an important cytokine participating in multiple biologic activities in immune regulation and inflammation. IL-6 has been associated with cardiovascular remodeling. However, the mechanism of IL-6 in hypertensive cardiac fibrosis is still unclear. Angiotensin II (Ang II) infusion in mice increased IL-6 expression in the heart. IL-6 knockout (IL-6-/-) reduced Ang II-induced...

متن کامل

Relaxin Prevents Cardiac Fibroblast-Myofibroblast Transition via Notch-1-Mediated Inhibition of TGF-β/Smad3 Signaling

The hormone relaxin (RLX) is produced by the heart and has beneficial actions on the cardiovascular system. We previously demonstrated that RLX stimulates mouse neonatal cardiomyocyte growth, suggesting its involvement in endogenous mechanisms of myocardial histogenesis and regeneration. In the present study, we extended the experimentation by evaluating the effects of RLX on primary cultures o...

متن کامل

Up-regulation of BMP-2 antagonizes TGF-β1/ROCK-enhanced cardiac fibrotic signalling through activation of Smurf1/Smad6 complex

Rho-associated kinase (ROCK) plays a critical role in pressure overload-induced left ventricular remodelling. However, the underlying mechanism remains unclear. Here, we reported that TGF-β1-induced ROCK elevation suppressed BMP-2 level and strengthened fibrotic response. Exogenous BMP-2 supply effectively attenuated TGF-β1 signalling pathway through Smad6-Smurf-1 complex activation. In vitro c...

متن کامل

TGFβ1 Controls PPARγ Expression, Transcriptional Potential, and Activity, in Part, through Smad3 Signaling in Murine Lung Fibroblasts

Transforming growth factor β1 (TGFβ1) promotes fibrosis by, among other mechanisms, activating quiescent fibroblasts into myofibroblasts and increasing the expression of extracellular matrices. Recent work suggests that peroxisome proliferator-activated receptor γ (PPARγ) is a negative regulator of TGFβ1-induced fibrotic events. We, however, hypothesized that antifibrotic pathways mediated by P...

متن کامل

SUMO Proteins are not Involved in TGF-β1-induced, Smad3/4-mediated Germline α Transcription, but PIASy Suppresses it in CH12F3-2A B Cells

TGF-β induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-β signal-transducing transcription factors, mediate germline (GL) α transcription induced by TGF-β1, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-β-induced transcriptional activation in certain cell types. In the present study, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 40 5  شماره 

صفحات  -

تاریخ انتشار 2016